Minggu, 23 Juni 2013

SISTEM PAGING DAN SEGMENTASI


Sistem Paging Adalah sistem manajemen pada sistem operasi dalam mengatur program yang sedang berjalan. Program yang berjalan harus dimuat di memori utama. Kendala yang terjadi apabila suatu program lebih besar dibandingkan dengan memori utama yang tersedia.
Untuk mengatasi hal tersebut Sistem Paging mempunyai 2 solusi, yaitu:
1. Konsep Overlay
Dimana program yang dijalankan dipecah menjadi beberapa bagian yang dapat dimuat memori (overlay). Overlay yang belum diperlukan pada saat program berjalan (tidak sedang di eksekusi) disimpan di disk, dimana nantinya overlay tersebut akan dimuat ke memori begitu diperlukan dalam eksekusinya.
2. Konsep Memori Maya (virtual Memory)
Adalah kemampuan mengalamati ruang memori melebihi memori utama yang tersedia. Konsep ini pertama kali dikemukakan Fotheringham pada tahun 1961 untuk sistem komputer Atlas di Universitas Manchester, Inggris.
Gagasan Memori Maya adalah ukuran gabungan program, data dan stack melampaui jumlah memori fisik yang tersedia. Sistem operasi menyimpan bagian-bagian proses yang sedang digunakan di memori utama dan sisanya di disk. Begitu bagian di disk diperlukan maka bagian memori yang tidak diperlukan disingkirkan dan diganti bagian disk yang diperlukan.

A. Pengertian Memori Maya
Didalam menejemen memori dengan system partisi statis dan system dinamis sudah dapat menyelesaikan masalah menejemen memori didalam banyak hal, tetapi masih memiliki kekurangan atau keterbatasan di dalam pengakses. Dimana keterbatasan akses hanya sebatas addres memori yang ada secara fisik ( memori nyata ).
Misalnya memori 64 MB maka addres maksimum yang dapat diakses hanya sebesar 64 MB saja. Pada hal banyak program yang akan diakses yang melebihi 64 MB. Untuk mengatasi hal tersebut agar kemampuan akses lebih besar lagi maka dibentuklah memori maya ( yang pertama sekali di kemukakan oleh Fotheringham pada tahun 1961 untuk system komputer Atlas di Universitas Manchester, Inggris).
Dengan memori maya program yang besar tadi akan dapat diterapkan pada memori kecil saja, misalnya program 500 MB dapat ditempatkan secara maya di memori 64 MB. Untuk mengimplementasikan memori maya tersebut dapat dilakukan dengan tiga cara :
1. Sistem Paging
2. Sistem Segmentasi
3. Sistem kombinasi Paging dan Segmentasi
B. Memori system Paging
Untuk menginplementasikan addres maya yang besar ke dalam memori yang kecil diperlukan index register,base register, segment register dan MMU ( Memory Menegement Unit ).
· Pemetaan Memori Sistem Paging
Sistem kinerja komputer akan menerjemahkan alamat maya menjadi alamat fisik. Dengan kata lain dalam system memori maya alamat memori tidak langsung di tuliskan ke BUS tetapi terlebih dahulu dimasukkan ke MMU untuk diterjemahkan. Ada dua kemungkinan keluaran MMU yaitu :
1. Alamat yang dicari ada dimemori nyata, maka proses dapat langsung dikerjakan.
2. Alamat yang dicari tidak ada didalam memori nyata, maka MMU mengeluarkan page fault, yaitu permintaan alokasi memori untuk proses itu.
MMU mempunyai fungsi untuk memetakan memori maya ke memori fisik. Apabila alamat memori yang dipetakan tidak tersedia di memori fisik, MMU menertibkan exception page fault yang melewatkan ke system operasi untuk menengani.
  
Apabila exception page fault meminta alokasi memori akan ditangani oleh system operasi yaitu memilih partisi yang telah selesai diakses dan kemungkinan proses ini akan digunakan lagi, dalam waktu yang lama lagi. Jika sudah dipilih maka program akan dikosongkan dari memori dan selanjutnya program yang alamatnya yang diminta akan dimasukkan ke memori.
·         Proses Pemetaan Pada MMU
Dibawah ini adalah suatu proses pemetaaan memori yang terjadi pada MMU. Alamat maya terdiri dari bagiannomor page dan offset. Alamat ini dicarikan didalam tabel page, bila ketemu maka MMU mengeluarkan page frame ( register alamat fisik ).Register alamat fisik terdiri darei nomor page dan offset, dimana nomor page frame lebih sedikit dari nomor page.
Apabila alamat tersebut tidak ada pada tabel page maka MMU mengeluarkan page fault.

C. Sistem Segmentasi
· Pengertian Segmentasi
Secara sederhana segmentasi bisa diartikan sebagai suatu ruang alamat atau segment yang berada di memori. Segment-segment itu dalam keadaan independent. Setiap segment berisi alamat 0 sampai maksimum secara linier. Panjang setiap segment berbeda-beda sampai panjang maksimun, perobahanpanjang segment terjadi selama proses eksekusi.
Segment stack bertambah ketika terjadi operasi push dan turun saat operasi pop, dimana setiap segment merupakan ruang alamat terpisah segment-segment dapat tumbuh dan mengkerut secara bebas tanpa mempengaruhi yang lain.
Alamat terdiri dari dua bagian pada memori bersegment yaitu :
1. Nomor segment
2. Alamat pada segment ( offset ).
Segment dapat berisi :
1. Prosedure
2. Array
3. Stack
4. Kumpulan variable skala.
· Sistem Segmentasi
Sistem dengan memori maya dengan segmentasi murni adalah alamat maya adalah offset di segment, setiap proses mempunyai tabel segment dan pada saat proses running alamat awal maya tabel dimuatkan ke register dasar. Nomor segment digunakan mencari deskriptor segment di tabel segment yang menyediakan alamat fisik awal dari segment, panjang dan bit-bit proteksinya. Alamat fisik dihitung dengan menambahkan alamat dasar segment ke alamat maya.

Keunggulan sistem ini dimana segment-segment tersebut saling berhubungan dengan unit-unit program, sehingga segment – segment indeal untuk proteksi dan pemakaian bersama.
Kelemahan sistem ini adalah dimana segment – segment berukuran bervariasi menyebabkan fragmentasi eksternal dan sulit menyelesaikan pertumbuhan dinamis. Segment-segment tidak memetakan blok-blok disk untuk memori maya secara alami.




Kamis, 25 April 2013

DEADLOCK PADA SISTEM OPERASI


Deadlock pada Sistem Operasi
Deadlock adalah keadaan dimana 2 atau lebih proses saling menunggu meminta resources untuk waktu yang tidak terbatas lamanya. Analoginya seperti pada kondisi jalan raya dimana terjadi kemacetan parah. Deadlock adalah efek samping dari sinkronisasi, dimana satu variabel digunakan oleh 2 proses. Deadlock bisa digambarkan sebagai berikut :
·         Kejadian Deadlock selalu tidak lepas dari sumber daya, bahwa hampir seluruhnya merupakan masalah sumber daya yang digunakan bersama-sama. Oleh karena itu, kita juga perlu tahu tentang jenis sumber daya yaitu: sumber daya dapat digunakan lagi berulang-ulang dan sumber daya yang dapat digunakan dan habis dipakai atau dapat dikatakan sumber daya sekali pakai. Sumber daya ini tidak habis dipakai oleh proses mana pun.Tetapi setelah proses berakhir, sumber daya ini dikembalikan untuk dipakai oleh proses lain yang sebelumnya tidak kebagian sumber daya ini.
Contohnya prosesor, Channel I/O, disk, semaphore. Contoh peran sumber daya jenis ini pada terjadinya Deadlock ialah misalnya sebuah proses memakai disk A dan B, maka akan terjadi Deadlock jika setiap proses sudah memiliki salah satu disk dan meminta disk yang lain. Masalah ini tidak hanya dirasakan oleh pemrogram tetapi oleh seorang yang merancang sebuah sistem operasi. Cara yang digunakan pada umumnya dengan cara memperhitungkan dahulu sumber daya yang digunakan oleh
proses-proses yang akan menggunakan sumber daya tersebut. Contoh lain yang menyebabkan Deadlock dari sumber yang dapat dipakai berulang-ulang ialah berkaitan dengan jumlah proses yang memakai memori utama.
Ada empat kondisi yang dapat menyebabkan terjadinya deadlock. Keempat kondisi tersebut tidak dapat berdiri sendiri, namun saling mendukung.
1.      Mutual exclusion. Hanya ada satu proses yang boleh memakai sumber daya, dan proses lain yang ingin memakai sumber daya tersebut harus menunggu hingga sumber daya tadi dilepaskan atau tidak ada proses yang memakai sumber daya tersebut.
2.      Hold and wait. Proses yang sedang memakai sumber daya boleh meminta sumber daya lagi maksudnya menunggu hingga benar-benar sumber daya yang diminta tidak dipakai oleh proses lain, hal ini dapat menyebabkan kelaparan sumber daya sebab dapat saja sebuah proses tidak mendapat sumber daya dalam waktu yang lama.
3.      No preemption. Sumber daya yang ada pada sebuah proses tidak boleh diambil begitu saja oleh proses lainnya. Untuk mendapatkan sumber daya tersebut, maka harus dilepaskan terlebih dahulu oleh proses yang memegangnya, selain itu seluruh proses menunggu dan mempersilahkan hanya proses yang memiliki sumber daya yang boleh berjalan.
4.       Circular wait. Kondisi seperti rantai, yaitu sebuah proses membutuhkan sumber daya yang dipegang proses berikutnya.

A.    Strategi mengatasi Deadlock :
Addabeberapa cara untuk menanggulangi terjadinya deadlock, diantaranya adalah:
·         Mengabaikan masalah deadlock.
·         Mendeteksi dan memperbaiki Penghindaran yang terus menerus dan pengalokasian yang baik dengan menggunakan protokol untuk memastikan sistem tidak pernah memasuki keadaan deadlock. Yaitu dengan deadlock
avoidance sistem untuk mendata informasi tambahan tentang proses mana yang akan meminta dan menggunakan sumber daya.
·         Pencegahan yang secara struktur bertentangan dengan empat kondisi terjadinya deadlock dengan deadlock prevention sistem untuk memastikan bahwa salah satu kondisi yang penting tidak dapat menunggu.

B.     Mengabaikan Masalah Deadlock
Untuk memastikan sistem tidak memasuki deadlock, sistem dapat menggunakan pencegahan deadlock atau penghindaran deadlock. Penghindaran deadlock membutuhkan informasi tentang sumber daya yang mana yang akan suatu proses meminta dan berapa lama akan digunakan. Dengan informasi tersebut dapat diputuskan apakah suatu proses harus menunggu atau tidak. Hal ini disebabkan oleh keberadaan sumber daya, apakah ia sedang digunakan oleh proses lain atau tidak. Metode ini lebih dikenal dengan Algoritma Ostrich. Dalam algoritma ini dikatakan bahwa untuk menghadapi Deadlock ialah dengan berpura-pura bahwa tidak ada masalah apa pun. Hal ini seakanakan melakukan suatu hal yang fatal, tetapi sistem operasi Unix menanggulangi Deadlock dengan cara ini dengan tidak mendeteksi Deadlock dan membiarkannya secara otomatis mematikan program sehingga seakan-akan tidak terjadi apa pun. Jadi jika terjadi Deadlock, maka tabel akan penuh, sehingga proses yang menjalankan proses melalui operator harus menunggu pada waktu tertentu dan mencoba lagi.

C.    Mendeteksi dan Memperbaiki
Caranya ialah dengan cara mendeteksi jika terjadi deadlock pada suatu proses maka dideteksi sistem mana yang terlibat di dalamnya. Setelah diketahui sistem mana saja yang terlibat maka diadakan proses untuk memperbaiki dan menjadikan sistem berjalan kembali. Jika sebuah sistem tidak memastikan deadlock akan terjadi, dan juga tidak didukung dengan  pendeteksian deadlock serta pencegahannya, maka kita akan sampai pada kondisi deadlock yang dapat berpengaruh terhadap performance sistem karena sumber daya tidak dapat digunakan oleh proses sehingga proses-proses yang lain juga terganggu. Akhirnya sistem akan berhenti dan harus direstart.
Hal-hal yang terjadi dalam mendeteksi adanya Deadlock adalah:
·         Permintaan sumber daya dikabulkan selama memungkinkan.
·         Sistem operasi memeriksa adakah kondisi circular wait secara periodik.
·         Pemeriksaan adanya deadlock dapat dilakukan setiap ada sumber daya yang
·         hendak digunakan oleh sebuah proses.
·         Memeriksa dengan algoritma tertentu.
Ada beberapa jalan untuk kembali dari Deadlock, yaitu:
·         Lewat Preemption
Dengan cara untuk sementara waktu menjauhkan sumber daya dari pemakainya, dan memberikannya pada proses yang lain. Ide untuk memberi pada proses lain tanpa diketahui oleh pemilik dari sumber daya tersebut tergantung dari sifat sumber daya itu sendiri. Perbaikan dengan cara ini sangat sulit atau dapat dikatakan tidak mungkin. Cara ini dapat dilakukan dengan memilih korban yang
Akan dikorbankan atau diambil sumber dayanya untuk sementara, tentu saja harus dengan perhitungan yang cukup agar waktu yang dikorbankan seminimal mungkin. Setelah kita melakukan preemption dilakukan pengkondisian proses tersebut dalam kondisi aman. Setelah itu proses dilakukan lagi dalam
kondisi aman tersebut.


·         Lewat Melacak Kembali
Setelah melakukan beberapa langkah preemption, maka proses utama yang diambil sumber dayanya akan berhenti dan tidak dapat melanjutkan kegiatannya, oleh karena itu dibutuhkan langkah untuk kembali pada keadaan aman dimana proses masih berjalan dan memulai proses lagi dari situ. Tetapi untuk beberapa keadaan sangat sulit menentukan kondisi aman tersebut, oleh karena itu umumnya dilakukan cara mematikan program tersebut lalu memulai kembali proses. Meski pun sebenarnya lebih efektif jika hanya mundur beberapa langkah saja sampai deadlock tidak terjadi lagi. Untuk beberapa sistem mencoba dengan cara mengadakan pengecekan beberapa kali secara periodik dan menandai tempat terakhir kali menulis ke disk, sehingga saat terjadi deadlock dapat mulai dari tempat terakhir penandaannya berada.
·         Lewat mematikan proses yang menyebabkan Deadlock
Cara yang paling umum ialah mematikan semua proses yang mengalami deadlock. Cara ini paling umum dilakukan dan dilakukan oleh hampir semua sistem operasi. Namun, untuk beberapa sistem, kita juga dapat mematikan beberapa proses saja dalam siklus deadlock untuk menghindari deadlock dan mempersilahkan proses lainnya kembali berjalan. Atau dipilih salah satu korban untuk melepaskan sumber dayanya, dengan cara ini maka masalah pemilihan korban menjadi lebih selektif, sebab telah diperhitungkan beberapa kemungkinan jika si proses harus melepaskan sumber dayanya. Kriteria pemilihan korban ialah:
Ø  Yang paling jarang memakai prosesor
Ø  Yang paling sedikit hasil programnya
Ø  Yang paling banyak memakai sumber daya sampai saat ini
Ø  Yang alokasi sumber daya totalnya tersedkit
Ø  Yang memiliki prioritas terkecil
·         Menghindari Deadlock
Pada sistem kebanyakan permintaan terhadap sumber daya dilakukan sebanyak sekali saja. Sistem sudah harus dapat mengenali bahwa sumber daya itu aman atau tidak (tidak terkena deadlock), setelah itu baru dialokasikan. Ada dua cara yaitu:
Ø  Jangan memulai proses apa pun jika proses tersebut akan membawanya pada kondisi deadlock, sehingga tidak mungkin terjadi deadlock karena pada saat akan menuju deadlock, proses sudah dicegah.
Ø  Jangan memberi kesempatan pada suatu proses untuk meminta sumber daya lagi jika penambahan ini akan membawa kita pada suatu keadaan deadlock. Jadi diadakan dua kali penjagaan, yaitu saat pengalokasian awal, dijaga agar tidak deadlock dan ditambah dengan penjagaan kedua saat suatu proses meminta sumber daya, dijaga agar jangan sampai terjadi deadlock. Pada sistem deadlock avoidance (penghindaran) dilakukan dengan cara memastikan bahwa program memiliki maksimum permintaan. Dengan kata lain cara sistem ini memastikan terlebih dahulu bahwa sistem akan selalu dalam kondisi aman. Baik mengadakan permintaan awal atau pun saat meminta permintaan sumber daya
tambahan, sistem harus selalu berada dalam kondisi aman.
Tgl akses : 24 april 2013 11:04

MUTUAL EXCLUSION


MUTUAL EXCLUSION
A.        Definisi
Beberapa proses terkadang membutuhkan sumber daya yang sama pada saat bersamaan. Sumber daya seperti ini disebut sumber daya kritis. Bagian program yang menggunakan sumber daya kritis disebut memasuki critical region/section. Hanya satu program pada saat yang diijinkan masuk critical region. Kondisi yang tidak dapat diprediksi hasilnya, bergantung pada proses-proses berjalan yang sedang bersaing disebut Kondisi Pacu (Race Condition). Kondisi pacu harus dihilangkan agar hasil-hasil proses dapat diprediksi dan tidak bergantung pada jalanya proses-proses tersebut. Sistem operasi hanya menyediakan layanan (berupa system call) untuk mencegah proses masuk critical section yang sedang dimasuki proses lain. Pemrogram harus menspesifikasikan bagian-bagian critical region sehingga sistem operasi akan menjaganya dengan suatu mekanisme untuk mencegah proses lain masuk critical region yang sedang dipakai proses lain. inilah yang dimaksud dengan mutual exclusion. Mutual Exclusion adalah suatu cara yang menjamin jika ada sebuah proses yang menggunakan variabel atau berkas yang sama (digunakan juga oleh proses lain), maka proses lain akan dikeluarkan dari pekerjaanyangsama.

KriteriapenyelesaianMutualExclusion : Mutual Exclusionharus dijamin. Hanya satu proses pada satu saat yang diizinkan masuk Critical Section/Region. Proses yang berada di noncritical section, dilarang memblok proses-proses yang ingin masuk critical section. Harus dijamin proses yang ingin masuk critical section tidak menunggu lama hingga waktu tak terhingga, agar tidak terjadi deadlock atau starvation. Ketika ada proses di critical section maka proses yang ingin masuk critical section harus diijinkan segera masuk tanpa waktu tunda tidak ada asumsi mengenai kecepatan relative proses atau jumlah proses yang ada.

B.         Metode-metode Penjamin Mutual Exclusion
1.        Metode Naif
Sebenarnya metode ini tidak menyelesaikan mutual exclusion, karena masih terdapat scenario proses yang membuat situasi kacau. Metode ini sering disebut metode variable lock sederhana. Ketika proses hendak masuk critical section, proses lebih dulu memeriksa variable lock dengan ketentuan :
Jika variable lock bernilai 0, proses mengeset variable lock menjadi 1 dan segera masuk critical section. Jika variable lock bernilai 1, proses menunggu sampai nilai variabel lock menjadi 0.
2.        Metode untuk situasi tertentu
Metode ini sering disebut metode bergantian secara ketat yang mengasumsikan proses-proses yang hendak masuk critical section secara bergantian terus menerus. Proses memeriksa terus menerus sehingga kondisi siap untuk diproses. Kondisi ini tidak dapat ditentukan lamanya waktu sehingga menyia-nyiakan waktu pemroses. Suatu saat kondisi akan crash ketika ada proses yang harus segera masuk sementara ada proses lain yang masih berjalan.
3.        Metode Busy Waiting
a.       Metode Penyelesaian Dekker
Algoritma Dekker mempunyai property-property berikut : Tidak memerlukan instruksi-instruksi perangkat keras khusus. Proses yang beroperasi di luar critical section tidak dapat mencegah proses lain memasuki critical section. Proses yang ingin masuk critical section akan segera masuk bila dimungkinkan.
b.      Metode Penyelesaian Peterson
Sebelum masuk critical section, proses memanggil enter_critical_section, namun sebelumnya proses memeriksa sampai kondisi aman. Terjadi busy waiting, setelah selesai proses menandai pekerjaan dan mengijinkan proses lain masuk. Keadaan awal tidak ada proses di critical section. Proses 0 akan masuk critical section. Proses menandai elemen arraynya dan mengeset turn ke 0. Proses memeriksa kondisi, dan prosedur enter_critical_section dilaksanakan. Jika kemudian, proses 1 akan masuk, proses akan menunggu sampai interest(0) menjadi FALSE. Kondisi ini hanya terjadi jika proses 0 mengeset elemen itu dan keluar dari critical section.
c.       Metode Pematian Interupsi
Proses mematikan interupsi ke pemroses dan segera masuk ke critical section. Proses kembali mengaktifkan interupsi segera setelah meninggalkan critical section. Metode ini mengakibatkan. Pemroses tidak dapat beralih ke proses lain karena interupsi clock dimatikan sehingga penjadual pun tidak dieksekusi. Karena penjadual tidak beroperasi maka tidak terjadi alih proses. Proses dapat memakai memori bersama tanpa takutΓΌ terinvensi proses lain karena memang tidak ada proses lain yang dieksekusi saat itu.
Kelemahan utama :
Bila proses yang mematikan interupsi mengalami gangguan maka proses tidak akan pernah menghidupkan interupsi kembali. Kejadian ini mengakibatkan kematian seluruh system. Jika terdapat dua pemroses atau lebih, mematikan interupsi hanya berpengaruh pada pemrosesan yang sedang mengeksekusi intruksi itu. Proses lain masih dapat memasuki critical section.
d.      Metode Test and Set Lock (TSL)
Metode ini membaca isi memori ke register dan kemudian menyimpan nilai bukan 0  ke alamat memori. Pemroses yang mengeksekusi instruksi tsl mengunci bus memori, mencegah pemroses lain mengkases memori.
e.       Metode Exchange (XCHG)
Metode ini menggunakan instruksi exchange (xchg). Instruksi xchg menukarkan dua isi memori.
f.       Metode Instruksi Mesin
Keunggulan :
·         Sederhana dan mudah diverifikasi
·          Dapat diterapkan ke sembarang jumlah proses
·          Dapat digunakan untuk mendukung banyak critical region
Kelemahan :
·         Merupakan metode dengan busy waiting, sangat tidak efisien.
·          Adanya busy waiting memungkinkan terjadi deadlock dan starvation.
 
4.        Metode Penyelesaian Level Tinggi (Metode Semapore)
Dua proses atau lebih dapat bekerja sama dengan menggunakan penanda-penanda sederhana. Proses berhenti sampai proses memperoleh penanda tertentu. Variabel khusus untuk penandaan ini disebut semaphore. Semaphore mempunyai dua property :
a.       Semaphore dapat diinisialisasi dengan nilai bukan negative.
b.      Ada dua operasi terhadap semaphore yaitu Operasi Up dan Operasi Down.
·         Operasi Down
Operasi ini menurunkan nilai semaphore. Jika nilai semaphore menjadi bukan positif maka proses yang mengeksekusinya diblok. Operasi Down adalah atomic (atomic action), tidak dapat diinterupsi sebelum selesai. Menurunkan nilai, memeriksa nilai, menempatkan proses pada antrian dan memblok sebagai instruksi tunggal. Tidak ada proses lain yang dapat diakses sampai proses selesai.
·         Operasi Up
Operasi ini menaikkan nilai semaphore. Jika satu proses atau lebih telah diblok pada suatu semaphore tidak dapat menyelesaikan operasi down maka salah satu dipilih oleh system dan dibolehkan menyelesaikan operasi downnya. Operasi Up menaikan nilai semaphore, memindahkan dari antrian dan menempatkan satu proses ke senarai ready tidak dapat diinterupsi.
Sebelum masuk critical section, proses melakukan down. Bila berhasil maka proses masuk critical section. Bila tidak berhasil maka proses diblok pada semaphore. Proses yang diblok dapat melanjutkan jika proses yang berada di critical section keluar dan melakukan operasi up dan menjadikan proses yang diblok menjadi ready dan berlanjut hingga operasi downnya berhasil.

C.        Implementasi Semaphore
1.      Pematian Interupsi
Sistem operasi mematikan interupsi selagi memeriksa semaphore, memperbarui, dan menjadikan proses diblok. Karena semua aksi hanya memerlukan beberapa instruksi, pematian interupsi tidak merugikan.
2.      Instruksi tsl
Pada banyak pemroses, tiap semaphore dilindungi variable lock dan instruksi tsl agar menjamin hanya satu pemroses yang saat itu memanipulasi semaphore.

diambil dari: Modul 04/Sistem Operasi – Yuli Haryanto, S.Kom./Tatap Muka 9
Diposkan oleh blog pikun
Tgl akses : 24 April 2013 11:04